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With the increasing demand of PCB’s due to the rise in demand for high performance computing components like GPUs, CPUs in

AI and Software Industry, smartphones, computers, and gaming consoles in consumer industry and other industries like medical

industry, Automotive industry, Aerospace and Defence Industry, etc., there is a proportional increase in the need to reduce the

defects in PCB manufacturing and to detect any defects to prevent any accidents. Moreover, ensuring product quality mandates

meticulous defect

inspection, a task exacerbated by the heightened precision of contemporary circuit boards, intensifying the challenge of defect

detection. [1]

X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB Defect Detection," in IEEE Access,

vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561.

IMPORTANCE OF PCBs

The global electronic contract manufacturing
and design services market size was accounted
for USD 611.03 billion in 2024 and is expected to

exceed around USD 1,544.97 billion by 2034,
growing at a CAGR of 9.72% from 2025 to 2034.
[2] Precedence Research. Electronic contract
manufacturing and design services market.

https://www.precedenceresearch.com/electronic
-contract-manufacturing-and-design-services-

market.



PCB can be categorized defects into two primary groups: 
1) Functional defects that directly affect circuit operation and can cause complete failure.
2) Cosmetic defects that primarily impact appearance but may eventually lead to performance
issues through abnormal heat dissipation or current distribution. 

DEFECTS IN PCBs

Decreasing these defects is crucial for reducing financial loss like if the defects are detected in bare
PCBs (those without electronic components) or at the Solder Paste Inspection stage then reworking
the PCB only costs one-tenth as compared to after the re-flow oven stage, reducing defects
ensures better performance and longevity of end products and it is especially important that PCB
has minimal to no defects in critical applications like automotive and medical devices, minimizing
defects becomes crucial for safety and reliability.

NEED TO DECREASE THESE DEFECTS



PROBLEM STATEMENTml
(Manual
Labour)

PCB defects can compromise performance, increase costs, and
reduce product reliability. Traditional inspections are labor-intensive

and expensive, while deep learning solutions demand high
computational resources. This project aims to develop a classical

ML-based defect detection model using feature extraction and
oversampling techniques to improve accuracy, scalability, and

efficiency for manufacturers.
ML

(Machine
Learning Models)



Literature
Review



BarePCB state of art

Citation:- 
TDD-net: a tiny defect detection network for printed circuit boards Runwei Ding, Linhui Dai, Guangpeng Li, Hong Liu  

https://doi.org/10.1049/trit.2019.0019

Key Features of TDD-Net:
Lightweight Architecture: Designed to be computationally
efficient, making it suitable for real-time applications and
deployment on devices with limited resources.
High Accuracy: Achieves a mean Average Precision (mAP) of
98.90% on standard PCB defect datasets, outperforming
several existing methods.

Model Backbone Anchors Feature Head mAP@0.5

Faster R-CNN [[8]] VGG-16 2k the last layer 2fc 58.57%

Faster R-CNN [[8]] ResNet-101 2k C5 2fc 94.27%

FPN [[14]] ResNet-101 2k {Pk} 2fc 92.23%

Faster R-CNN(fine-tun ResNet-101 2k C5 2fc 96.44%

TDD-Net(Ours) ResNet-101 2k {Pk} 2fc 98.90%

Limitations : 
1.Simplified Assumptions: The model may rely on assumptions that oversimplify

real-world complexities, such as static demand patterns or perfect market
conditions.

2. Scalability Concerns: The approach might face challenges when scaling up to
larger systems with numerous variables and constraints.
3.Integration with Real-Time Data: Limited consideration for real-time data
integration, which is crucial for dynamic decision-making in electricity markets.
4. No time based criteria used for assessment

https://ietresearch.onlinelibrary.wiley.com/authored-by/Ding/Runwei
https://ietresearch.onlinelibrary.wiley.com/authored-by/Dai/Linhui
https://ietresearch.onlinelibrary.wiley.com/authored-by/Li/Guangpeng
https://ietresearch.onlinelibrary.wiley.com/authored-by/Liu/Hong
https://doi.org/10.1049/trit.2019.0019
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2019.0019#cit2bf00067-bib-0008
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2019.0019#cit2bf00067-bib-0008
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2019.0019#cit2bf00067-bib-0014


SoldefAI: State of Art

Citation:- 
Fontana, G., Calabrese, M., Agnusdei, L., Papadia, G., & Del Prete, A. (2024). SolDef_AI: An Open Source PCB Dataset for Mask R-CNN

Defect Detection in Soldering Processes of Electronic Components. Journal of Manufacturing and Materials Processing, 8(3), 117.

https://doi.org/10.3390/jmmp8030117 

Model Used:- 
Mask R-CNN – used by the authors for PCB defect segmentation.
YOLO  – one-stage detector mentioned as a faster alternative
SSD  – another one-stage detector cited for comparison

Gap Analysis:-
No inference-time metrics (FPS/latency) are reported – real-time speed

is only discussed qualitatively (YOLO/SSD are noted to be faster).

Moderate accuracy: the Mask R-CNN model achieves only ~62.1% mAP

on the PCB defect task.

 Insipiration Point:-
Their work effectively emphasizes the need for task-specific datasets, such as
capturing PCB defects under varied angles and lighting. Their use of Mask R-CNN
for segmentation, along with per-class mAP evaluation, offers a detailed
performance breakdown — useful inspiration for robustness testing and structured
defect analysis.



Mean Average Precision (mAP): The mean of APs over all
classes telling on average, denoting the mean value resulting
from the integration of accuracy rates across distinct
thresholds, spanning a recall range from 0 to 1.
FPS serves as a metric for assessing inference speed,
representing the quantity of images that can be processed per
second on specific hardware. FPS holds significance as a key
metric for gauging model performance and its applicability in
real-time scenarios.
The F1 score provides a balanced mean between precision and
recall, effectively harmonizing the model’s accuracy and recall
Precision refers to the ratio of correctly predicted positive
samples to the total predicted positive samples by the model

Evaluation Criteria

Citation :  X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB
Defect Detection," in IEEE Access, vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561. 

https://ieeexplore.ieee.org/abstract/document/10343144
https://ieeexplore.ieee.org/abstract/document/10343144
https://ieeexplore.ieee.org/abstract/document/10343144
https://ieeexplore.ieee.org/abstract/document/10343144
https://ieeexplore.ieee.org/abstract/document/10343144


GAPS IN CURRENT METHODOLOGIES

To date about 45%
industries detect the
defects using
traditional manual
inspection methods
which are highly
labour-intensive, time-
consuming, and prone
to human error due to
lower operating costs.

Manual
Labour Technologies like Solder Paste Inspection (SPI) and Automated Optical Inspection (AOI), still face

challenges in achieving high accuracy, scalability, and adaptability across diverse PCB designs, as
a result industries still need to use manual labor to verify these. But are still used due to time
efficieny. However, since AOI is limited to surface-visible defects it becomes hard to catch hidden
or functional faults, for which methods like X-ray imaging inspect internal solder joints and
multilayer boards to reveal voids or misaligned connections and thermal imaging for detecting
thermal anomalies (like in short circuit) were introduced in the industry. But each had its own gaps.
The X-ray imaging is not efficient in detecting fine cracks or open solder joints and the problem
with thermal imaging is that its resolution is relatively low, making it poorly suited to very small
defects. Although all of these methods provided better inspection quality, most of them are limited
by financial and time constraints. But the AOI can detect almost any type of defects in a faster
and completely indestructible approach

Existing models in industry

1) Fonseca, L.A.L.O., Iano, Y., Oliveira, G.G.d. et al. Automatic printed circuit board inspection: a comprehensible survey. Discov Artif
Intell 4, 10 (2024). https://doi.org/10.1007/s44163-023-00081-5



 Challenges in Current Methodologies
1) Data Imbalance: Minor defects occupy a small area on PCBs, leading to an
imbalance between defective and non-defective samples during training
leading to poor model performance for rare defect categories.  
2)  Feature Loss in Deep Networks: While deep learning models excel at feature
extraction, the sometimes lose critical information about small defects due to
down-sampling layers.  

3)  Computational Efficiency: Many state-of-the-art models like YOLOv3 or
Faster R-CNN achieve high accuracy but are computationally expensive.  

4) Not Scalable Across Different Designs : PCB as a technology are
continuously evolving and the models start failing as soon as there is a
change in its design and hence models need to retrained on new data
frequently requiring the need of models that can be retrained efficiently at a
scalable level without losing accuracy

5) Current models do not factor in time and most of them use no criteria
relating to time in their models.



2. Solder Paste PCB Inspection
This datset has around 2000 images in it.

During the inspection of solder paste application
on PCBs, the following categories are identified:

Good Category – Proper solder paste
application ensuring reliable connections.
Excessive Solder – Too much solder, which

can lead to bridging or weak joints.
Not Good – General classification for defects

in solder application.
Poor Solder – Insufficient or uneven solder,

leading to weak connections.
Spike – Sharp solder formations that can

cause short circuits.

1. Bare PCB Inspection
There are around 8534 training images of these.

For bare PCBs (before soldering), the following defects are
examined:

Missing Hole – A required hole is not drilled or plated.
Mouse Bite – Small notches or irregularities along the PCB

edges.
Open Circuit – A break in the circuit traces, causing

connectivity failure.
Short Circuit – Unintended connections between traces

leading to malfunctions.
Spur – Unwanted protrusions in the copper traces.

Spurious Copper – Unintended copper residue, which can
cause electrical issues.

Data Set Study 

  https://www.kaggle.com/datasets/akhatova/pcb-defects https://www.kaggle.com/datasets/mauriziocalabrese/soldef
-ai-pcb-dataset-for-defect-detection/data - 

Dataset consists images in .JPG format along with JSON
file containing their data in it.

https://www.kaggle.com/datasets/norbertelter/pcb-defect-dataset
https://www.kaggle.com/datasets/norbertelter/pcb-defect-dataset
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data


Data Set Study 
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Spike
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Missing Hole

open_circuit

short
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spurious_copper

Solder Paste Dataset Bare PCB



Pre-processing

1) Since our dataset consists of images,

we do not need to preprocess the data. 2)

We are expanding our dataset by

applying modifications such as rotating

the images at different angles, adjusting

the hue, and increasing saturation.

3) In future we may segment a single

image into multiple images for better

accuracy on minor defects.

Original

Hue

Rotated

Saturated

Fonseca, L.A.L.O., Iano, Y., Oliveira, G.G.d. et al.
Automatic printed circuit board inspection: a

comprehensible survey. Discov Artif Intell 4, 10
(2024). Your paragraph text

https://doi.org/10.1007/s44163-023-00081-5
https://doi.org/10.1007/s44163-023-00081-5
https://doi.org/10.1007/s44163-023-00081-5
https://doi.org/10.1007/s44163-023-00081-5
https://doi.org/10.1007/s44163-023-00081-5


Dataset Preprocessing
We have used several methods to

extract features which include:
Histogram of Oriented
Gradients
Local Binary Pattern  (LBP)
GLCM (Gray Level Co-
occurrence Matrix)
Hu Moments
Sobel Gradient Features
 Color Histogram
Contour-Based Shape
Features



Model Pipeline



CNN as a binary classifier
Data Loading

Recursive scan of two folders (bare_pcb_folder, solder_pcb_folder)
Images resized to 224×224 px, normalized to [0,1]
Labels: 0 = bare PCB, 1 = solder PCB

Dataset Preparation
Combined into X (images) and y (labels) arrays
Stratified train/test split (80 % train, 20 % test, random_state=42)

Model Architecture
Conv Block 1: Conv2D (32 filters, 3×3) → ReLU → MaxPool (2×2)
Conv Block 2: Conv2D (64 filters, 3×3) → ReLU → MaxPool (2×2)
Classifier: Flatten → Dense (64, ReLU) → Dense (1, Sigmoid)

Training & Evaluation
Compiled with Adam optimizer, binary cross‐entropy loss, accuracy metric
Trained for 1 epoch (batch size 32) with validation on test set



BarePCB
Models



1) Random Forest Classifier
Architecture:

Feature Extraction:
Each image (128×128) is transformed into a fixed-length numeric
feature vector using a combination of kernels like HOG features,
sobel, Hu moments, etc.

Data Augmentation & Balancing:
Applied albumentations transforms to balance underrepresented
classes.
All 5 defect classes have 2159 samples each.

Random Forest Classifier
n_estimators: 300
max_depth: 30
Class weighting: Balanced
StandardScaler() for input normalization

Evaluation:
Test Accuracy: 73.88%
mAP: 0.8035
AUC (OvR): 0.9491
Inference Time: 2.79 s 
FPS: 3828

Class Precision Recall F1-score

1 0.93 0.81 0.87

2 0.78 0.7 0.74

3 0.68 0.71 0.69

4 0.63 0.66 0.65

5 0.62 0.84 0.71



2) CNN
Architecture:

CNN layers:
3 Conv2D layers with ReLU + BatchNorm + MaxPool
Dense(256) → Dropout(0.4) → Output (softmax)

Loss Function: Custom Focal Loss
Minority class augmentation
Optimizer: Adam (lr=1e-5)
Early Stopping: Patience=5

Evaluation:
Test Accuracy: 71%
Macro F1-Score: 0.70
mAP: 0.7592
AUC (OvR): 0.935
Inference Time: 5.66s (FPS: 188.85)

Per-class Precision:
1: 0.9624
2: 0.7672
3: 0.6492
4: 0.6322
5: 0.5323

Per-class F1-score:
1: 0.8489
2: 0.7340
3: 0.6653
4: 0.5930
5: 0.6837



3) Resnet + Random Forest Classifier
Architecture:

Feature Extraction using ResNet50
All images are resized to 224×224×3 to match
ResNet50's input.
The last convolutional output is passed through
GlobalAveragePooling2D() resulting in a 2048-
dimensional vector for each image.

Random Forest classifier for classification
n_estimators = 100 trees
random_state = 42 for reproducibility

Evaluation:
Accuracy: 74%
Mean Average Precision (mAP): 0.7748
Overall AUC Score: 0.9423
Inference Speed:

Total Time: 0.06s
FPS: ~18,134 

Per-class Precision:
1: 0.944
2: 0.776
3: 0.664
4: 0.649
5: 0.611

Per-class F1-score:
1: 0.873
2: 0.736
3: 0.687
4: 0.634
5: 0.731



Solder Paste
Models



Random Forest Classifier
Pipeline:- 
1) Data pre-processing and Augmentation:  
Each image is loaded using OpenCV and resized to a fixed size.
Albumentations library is used to perform:
             i) Horizontal Flip (p=0.5)
             ii) Random Brightness/Contrast (p=0.2)
             iii) Rotation (±15 degrees, p=0.3)

2) Feature Extraction (HOG)
Grayscale conversion of the image as HOG does not require colour
Extracted Using:
                  i) 9 orientations
                  ii) 8*8 Pixels
                  iii) 2*2 block normalization

3) Label Encoding:
Labels extracted from JSON files are encoded into integers using
LabelEncoder, suitable for scikit-learn classifiers

4) Hyperparameter  Optimization:
Performed using GridSearchCV with 3-fold cross-validation on:
n_estimators: [100, 200] ; max_depth: [10, 20, None]
min_samples_split: [2, 5] ; min_samples_leaf: [1, 2]
max_features: ['sqrt', 'log2']



ResNet50 + Random Forest
Pipeline Description:- 
Feature Extraction: Each image was resized to 224x224 and passed through a pre-trained ResNet50 (without the top layer)

to extract global average pooled features.

Standardization: Features were scaled using StandardScaler.

Dimensionality Reduction: PCA with 200 components was applied to reduce overfitting and computation.

SMOTE Oversampling: The training set was augmented with synthetic samples to balance the class distribution.

Classifier: A Random Forest with 300 trees and balanced_subsample class weighting was used.



MASK R-CNN
1. Dataset Preparation 
Input Source: Labelled JSON and image files.
Two Datasets:
Dataset 1: ["good", "no_good"] (for binary classification)
Dataset 2: ["good", "exc_solder", "poor_solder", "spike"] 
Steps:
i) Filter valid annotations based on class labels.
ii) Split into 80% training and 20% validation.
iii) Organize into /images/train, /images/val, /labels/train, /labels/val.

2. Dataset Registration with Detectron2 
Parsed annotations using shapes from LabelMe JSON format.
Converted to Detectron2 format (polygon + bbox).
Registered with DatasetCatalog and MetadataCatalog.

3. Model Training & Evaluation 

Model: Mask R-CNN (R-50 FPN) from Model Zoo.

Configuration:

BASE_LR = 0.00025, MAX_ITER = 1500, BATCH_SIZE = 2

Training: Performed using DefaultTrainer.

Evaluation: Used COCOEvaluator to compute mAP on validation set.



Why our Model is better?
1) Higher Accuracy (mAP)
Our models consistently achieve higher mean Average Precision across all
defect types, even without relying on complex segmentation-based
architectures like Mask R-CNN. This shows superior feature extraction and
classification capability.

2) Faster Inference
Unlike their setup, we explicitly optimize and measure inference time,
making our models ideal for real-time edge deployment. Like in ResNet50
model we have inference time of approx 0.6 ms.

3) Better Generalization
Our models also achieve high per-class performance, addressing class
imbalance and hard-to-detect defects more effectively.

mAP in Random Forest Classifier:- 69.25%

mAP in ResNet50+Random Forest Classifier:- 86.83%



Thank you


