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IMPORTANCE OF PCBs

With the increasing demand of PCB’s due to the rise in demand for high performance computing components like GPUs, CPUs in
Al and Software Industry, smartphones, computers, and gaming consoles in consumer industry and other industries like medical
industry, Automotive industry, Aerospace and Defence Industry, etc., there is a proportional increase in the need to reduce the
defects in PCB manufacturing and to detect any defects to prevent any accidents. Moreover, ensuring product quality mandates
meticulous defect

inspection, a task exacerbated by the heightened precision of contemporary circuit boards, intensifying the challenge of defect
detection. [1]

X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB Defect Detection,” in IEEE Access,
vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561.
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DEFECTS IN PCBs

PCB can be categorized defects into two primary groups:
1) Functional defects that directly affect circuit operation and can cause complete failure.

2) Cosmetic defects that primarily impact appearance but may eventually lead to performance

issues through abnormal heat dissipation or current distribution.

NEED TO DECREASE THESE DEFECTS

Decreasing these defects is crucial for reducing financial loss like if the defects are detected in bare
PCBs (those without electronic components) or at the Solder Paste Inspection stage then reworking
the PCB only costs one-tenth as compared to after the re-flow oven stage, reducing defects
ensures better performance and longevity of end products and it is especially important that PCB

has minimal to no defects in critical applications like automotive and medical devices, minimizing

defects becomes crucial for safety and reliability.
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PCB defects can compromise performance, increase costs, and
reduce product reliability. Traditional inspections are labor-intensive
and expensive, while deep learning solutions demand high
computational resources. This project aims to develop a classical
ML-based defect detection model using feature extraction and
oversampling techniques to improve accuracy, scalability, and

efficiency for manufacturers.
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BarePCB state of art

Key Features of TDD-Net:

e Lightweight Architecture: Designed to be computationally
efficient, making it suitable for real-time applications and
deployment on devices with limited resources.

e High Accuracy: Achieves a mean Average Precision (mAP) of
98.90% on standard PCB defect datasets, outperforming

several existing methods.

Limitations :

1.Simplified Assumptions: The model may rely on assumptions that oversimplify
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real-world complexities, such as static demand patterns or perfect market el
conditions. Faster R-CNN [[8]]
2. Scalability Concerns: The approach might face challenges when scaling up to Faster R-CNN (8]

larger systems with numerous variables and constraints. FPN [1141]

3.Integration with Real-Time Data: Limited consideration for real-time data

Faster R-CNN(fine-tut

integration, which is crucial for dynamic decision-making in electricity markets.

4. No time based criteria used for assessment
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SoldefAl: State of Art

Table 9. Evaluation of AP metric—dataset_1.

Model Used:-
e Mask R-CNN - used by the authors for PCB defect segmentation.
e YOLO - one-stage detector mentioned as a faster alternative

e SSD - another one-stage detector cited for comparison

Gap Analysis:-
e No inference-time metrics (FPS/latency) are reported - real-time speed
is only discussed qualitatively (YOLO/SSD are noted to be faster).
e Moderate accuracy: the Mask R-CNN model achieves only ~62.1% mAP

on the PCB defect task.
Insipiration Point:-
Their work effectively emphasizes the need for task-specific datasets, such as
capturing PCB defects under varied angles and lighting. Their use of Mask R-CNN

for segmentation, along with per-class mAP evaluation, offers a detailed

Detection

Metric

loU

Area

maxDets

Value [%]

mAP
mAP
mAP
mAP
mAP

mAP

@IoU = 0.50:0.05:0.95
@IoU = 0.50
@loU = 0.75

@IoU = 0.50:0.05:0.95

@IoU = 0.50:0.05:0.95

@loU = 0.50:0.05:0.95

All
All
All
Small (area < 322)
Medium (322 < area < 962)

Large (area > 962)

100
100
100
100
100

100

62.11

71.05

71.05
NaN
NaN

62.113

Segmentation

mAP
mAP
mAP
mAP
mAP

mAP

@loU = 0.50:0.05:0.95
@loU =0.50
@loU =0.75

@loU = 0.50:0.05:0.95

@loU = 0.50:0.05:0.95

@IoU = 0.50:0.05:0.95

All
All
All
Small (area < 322)
Medium (322 < area < 962)

Large (area > 962)

100
100
100
100
100

100

68.57

71.05

71.05
NaN
NaN

68.57

performance breakdown — useful inspiration for robustness testing and structured

defect analysis.
Citation:-

Fontana, G, Calabrese, M., Agnusdei, L., Papadia, G., & Del Prete, A. (2024). SolDef_Al: An Open Source PCB Dataset for Mask R-CNN
Defect Detection in Soldering Processes of Electronic Components. Journal of Manufacturing and Materials Processing, 8(3), 117.
https://doi.org/10.3390/jmmp8030117



Evaluation Criteria

e Mean Average Precision (mAP): The mean of APs over all
classes telling on average, denoting the mean value resulting

from the integration of accuracy rates across distinct
. 2T P
thresholds, spanning a recall range from 0 to 1. Fy, =
e FPS serves as a metric for assessing inference speed, 2T'P+ FP+ FN

representing the quantity of images that can be processed per
second on specific hardware. FPS holds significance as a key
metric for gauging model performance and its applicability in
real-time scenarios.
e The F1score provides a balanced mean between precision and
recall, effectively harmonizing the model’'s accuracy and recall
e Precision refers to the ratio of correctly predicted positive Precision —
samples to the total predicted positive samples by the model

TP
TP+ FP

Citation : X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB
Defect Detection,” in IEEE Access, vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561.
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GAPS IN CURRENT METHODOLOGIES

Existing models in industry

Manual
Labour e Technologies like Solder Paste Inspection (SPI) and Automated Optical Inspection (AQI), still face

challenges in achieving high accuracy, scalability, and adaptability across diverse PCB designs, as
* To date about 45% a result industries still need to use manual labor to verify these. But are still used due to time

industries detect the efficieny. However, since AOI is limited to surface-visible defects it becomes hard to catch hidden
defects using or functional faults, for which methods like X-ray imaging inspect internal solder joints and
traditional manual multilayer boards to reveal voids or misaligned connections and thermal imaging for detecting
inspection methods thermal anomalies (like in short circuit) were introduced in the industry. But each had its own gaps.
which are highly The X-ray imaging is not efficient in detecting fine cracks or open solder joints and the problem
labour-intensive, time- with thermal imaging is that its resolution is relatively low, making it poorly suited to very small
consuming, and prone defects. Although all of these methods provided better inspection quality, most of them are limited
to human error due to by financial and time constraints. But the AOI can detect almost any type of defects in a faster

lower operating costs. and completely indestructible approach

1) Fonsecaq, L.A.L.O,, lano, Y., Oliveira, G.G.d. et al. Automatic printed circuit board inspection: a comprehensible survey. Discov Artif
Intell 4, 10 (2024). https://doi.org/10.1007/s44163-023-00081-5




Challenges in Current Methodologies

1) Data Imbalance: Minor defects occupy a small area on PCBs, leading to an
imbalance between defective and non-defective samples during training
leading to poor model performance for rare defect categories.

2) Feature Loss in Deep Networks: While deep learning models excel at feature
extraction, the sometimes lose critical information about small defects due to

down-sampling layers.

3) Computational Efficiency: Many state-of-the-art models like YOLOvV3 or

Faster R-CNN achieve high accuracy but are computationally expensive.

4) Not Scalable Across Different Designs : PCB as a technology are
continuously evolving and the models start failing as soon as there is @
change in its design and hence models need to retrained on new data
frequently requiring the need of models that can be retrained efficiently at a

scalable level without losing accuracy
5) Current models do not factor in time and most of them use no criteria

relating to time in their models.



Data Set Study Dataset consists images in .JPG format along with JSON
file containing their data in it.

1. Bare PCB Inspection 2. Solder Paste PCB Inspection
e There are around 8534 training images of these. e This datset has around 2000 images in it.
For bare PCBs (before soldering), the following defects are During the inspection of solder paste application
examined:

on PCBs, the following categories are identified:

e Missing Hole - A required hole is not drilled or plated. . Good Category - Proper solder paste

e Mouse Bite - Small notches or irregularities along the PCB L . . .
application ensuring reliable connections.

edges.
S | e Excessive Solder - Too much solder, which
. Open Circuit - A break in the circuit traces, causing

. | can lead to bridging or weak joints.
connectivity failure.

. - L
e Short Circuit - Unintended connections between traces Nott G - Generl dassificetion o ierecis

leading to malfunctions. in solder application.

e Poor Solder - Insufficient or uneven solder,

° Spur - Unwanted protrusions in the copper traces.
e Spurious Copper - Unintended copper residue, which can leading to weak connections.
cause electrical issues. o Spike - Sharp solder formations that can

cause short circuits.
https://www.kaggle.com/datasets/akhatova/pcb-defects

https://www.kaggle.com/datasets/mauriziocalabrese/soldef

-qi-pcb-dataset-for-defect-detection/data -



https://www.kaggle.com/datasets/norbertelter/pcb-defect-dataset
https://www.kaggle.com/datasets/norbertelter/pcb-defect-dataset
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
https://www.kaggle.com/datasets/mauriziocalabrese/soldef-ai-pcb-dataset-for-defect-detection/data
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Dataset
Solder Paste Dataset Bare PCB

spur

open_circuit Spurious_copper




Pre—processing

Original Saturated

1) Since our dataset consists of images,
we do not need to preprocess the data. 2)
We are expanding our dataset by
applying modifications such as rotating

the images at different angles, adjusting Rotated

the hue, and increasing saturation.
3) In future we may segment a single
image into multiple images for better

accuracy on minor defects.

Fonseca, L AL.O. lano, Y., Oliveira, G.G.d. et al.

Automatic printed circuit board inspection: a

comprehensible survey. Discov Artif Intell 4,10

(2024). Your paragraph text
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Dataset Preprocesszng

We have used several methods to
extract features which include:
e Histogram of Oriented
Gradients

e Local Binary Pattern (LBP)

e GLCM (Gray Level Co-
occurrence Matrix)

e Hu Moments

e Sobel Gradient Features

e Color Histogram

e Contour-Based Shape
Features




Model Pipeline

CNN model

1. Build custom CNN :
2D convolutional layers,
maxpooling, batch
normalization, droupout
2. Train CNN:
adam optimizer and
categorical crossentropy

BarePCB

L

Data Loading and
preprocessing:
1. Load the images
2. Perform label encoding
3. Perform augmentation on
minority classes

Resnet + RF

Random
Forest

|
Y

Type of PCB stage
using CNN as a binary

classifier

1. Preprocess input for ResNet50

2. Extracting features using
ResNet50

3. Training random forest
classifier

missing
hole

™~

1. Extract Handcrafted
Feautres:
HOG, LBP, GLCM, etc.

2. Standardize the features

3.Train random forest

Classification

circuit

Random
Forest

¥

Solder Paste

Stage PCB

Data Loading and
preprocessing:
1. Load the images
2. Perform label encoding
3. Perform augmentation on
minority classes

ResNet50 +
Random
Forest

Y

1. Extract Handcrafted
Feautres using HOG

2.Label Encoding
3. Standardize the features

4.Hyperparameter
Optimization
5.Train random forest

1. Extract Handcrafted
Feautres using pre-trained
model ResNet50

2. Standardize the features

3.Dimensionality Reduction
using PCA

4.Smote Oversampling

5.Train random forest

Mask R-CNN

1. Used Framework:- Detectron
2.Backbone:- ResNet 50-FPN
3.Input Format:- COCO like style
4.Detection and Segmentation

are performed
5.Evaluation metric:- COCO AP

Excess
Solder

H“m__
Poor
Solder



CNN as a binary classifier

e Recursive scan of two folders (bare_pcb_folder, solder_pcb_folder)

Data Loading

e Images resized to 224x224 px, normalized to [01]

e Labels: 0 = bare PCB, 1 = solder PCB
Dataset Preparation

e Combined into X (images) and y (labels) arrays

o Stratified train/test split (80 % train, 20 % test, random _state=42)
Model Architecture

e Conv Block 1: Conv2D (32 filters, 3x3) RelLU  MaxPool (2x2)

e Conv Block 2: Conv2D (64 filters, 3x3) RelLU  MaxPool (2x2)

e Classifier: Flatten  Dense (64, ReLU)  Dense (1, Sigmoid)
Training & Evaluation

e Compiled with Adam optimizer, binary cross-entropy loss, accuracy metric

e Trained for 1 epoch (batch size 32) with validation on test set



Models



1) Random Forest Classifier

33

1 200

Architecture: 1 16

e Feature Extraction:
o Each image (128x128) is transformed into a fixed-length numeric 5
feature vector using a combination of kernels like HOG features,
sobel, Hu moments, etc.
e Data Augmentation & Balancing:
o Applied alboumentations transforms to balance underrepresented
classes.
o All 5 defect classes have 2159 samples each.
e Random Forest Classifier 54 0 0 3 15 % 22
o n_estimators: 300 . . . | | 0
o max_depth: 30 Predicted label
o Class weighting: Balanced
o StandardScaler() for input normalization Class orecision recal L ccore

Evaluation:
e Test Accuracy: /3.88%
e MAP: 0.8035
e AUC (OVR): 0.9491 3 0.68 0.71 0.69
e Inference Time: 2.79 s 4 063 0.66 065
e FPS: 3828 ] o . .

175

150

125

- 100

True lahel

- 75
48

- 50

1 0.93 0.81 0.87

2 0.78 0.7 0.74



Architecture:
e CNN layers:

o 3 Conv2D layers with ReLU + BatchNorm + MaxPool

o Dense(256) Dropout(0.4)
e | 0ss Function: Custom Focal Loss
e Minority class augmentation
e Optimizer: Adam (Ir=1e-5)
e Early Stopping: Patience=5

Evaluation:
e Test Accuracy: /1%
e Macro F1-Score: 0.70
e MAP: 0.7592
e AUC (OVR): 0.935

2) CNN |

Qutput (softmax)

e Inference Time: 5.66s (FPS: 188.85)

Confusion Matrix
200

43 22

175
150
-

125

S
2 m - 100

- 75

Predicted

Per-class Precision: Per-class F1-score:

1:0.9624 1:0.8489
2:0.7672 2:0.7340
3:0.6492 3:0.6653
4. 0.6322 4: 0.5930
5:0.5323 5:0.6857



3) Resnet + Random Forest Classifier

Architecture:
e Feature Extraction using ResNet50

o All images are resized to 224x224x3 to match
ResNet50's input.

o The last convolutional output is passed through
GlobalAveragePooling2D() resulting in a 2048-
dimensional vector for each image.

e Random Forest classifier for classification

o n_estimators =100 trees

o random_state = 42 for reproducibility

Evaluation:
e Accuracy: /4%
e Mean Average Precision (mAP). 0.7/748
e Overall AUC Score: 0.9423
e Inference Speed:
o Total Time: 0.06s
o FPS: ~18,134

Confusion Matrix

18 0 200
175
150
125
- 100
- 75

=

- 50

n o 0 0 2 8 102 =25

| | I I |
1 2 3 4 5
Predicted

Per-class Precision: Per-class F1-score:

1. 0.944 1. 0.873
2:0.776 2:0.736
3:0.664 3:0.687
4. 0.649 4. 0.634
5: 0.611 5:0.731
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Models



Random Forest Classifier

4) Hyperparameter Optimization:

Pipeline:-

1) Data pre-processing and Augmentation: Performed using GridSearchCV with 3-fold cross-validation on:

n_estimators: [100, 200] ; max_depth: [10, 20, None]
min_samples_split: [2, 5] ; min_samples_leaf: [1, 2]

Each image is loaded using OpenCV and resized to a fixed size.
Albumentations library is used to perform:

i) Horizontal Flip (p=0.5)

i) Random Brightness/Contrast (p=0.2)

i Rotation (£15 degrees, p=0.3)

max_features: ['sqrt’, 'log2']

Classification Report (Random Forest + HOG + Augmentation)

precision recall fl-score  support

2) Feature Extraction (HOG) exc_solder .71 .52 .60 33

, , _ good ) .76 .62 66

Grayscale conversion of the image as HOG does not require colour e g &t 57 47

C . poor solder .00 s P47 13

Extracted Using: spike .00 .47 .64 15
) 9 orientations

accuracy 55 174

i) 8*8 Pixels macro avg : : : 174

.. , _ weighted avg . . . 174
i) 2*2 block normalization

3) Label Encoding: Average Precision (per class):
exc_solder: 0.7974
Labels extracted from JSON files are encoded into integers using good: ©.7992
no_good: 0.7463
LabelEncoder, suitable for scikit-learn classifiers poor_solder: ©.3169

spike: 0.8026

Mean Average Precision (mAP): 0.6925




ResNet50 + Random Forest

Pipeline Description:-
e Feature Extraction: Each image was resized to 224x224 and passed through a pre-trained ResNet50 (without the top layer)

to extract global average pooled features.

Standardization: Features were scaled using StandardScaler.

e Dimensionality Reduction: PCA with 200 components was applied to reduce overfitting and computation.

SMOTE Oversampling: The training set was augmented with synthetic samples to balance the class distribution.

e Classifier: A Random Forest with 300 trees and balanced _subsample class weighting was used.

Classification Report:

. . precision recall fl-score support
Mean Average Precision
exc solder 0.74 .97 0.84 33
good 0.62 .41 0.49 C P
e mMAP (macro-averaged): 0.8683 no_good 0.68 572 8.70 32
poor solder 0.97 .97 0.97 33
spike 0.97 .94 0.95 32
accuracy 0.80 162
Inference Performance B B : 2aTE 2

weighted avg - 8.79 162

e Total Inference Time: 0.0959 seconds for 162 images C‘gf[”;;‘-‘ig" :atgix;]

[ 71311 1 @]

e Average Inference Time per Image: 0.000592 seconds (~0.6 ms) % RS 2}

[2 @ © @ 30]]

Mean Average Precision (mAP): ©.8683

The pipeline is extremely fast, offering near real-time classification performance. ol Tnference Time: 80950 econde

Average Inference Time per Image: 0.0008592 seconds



MASK R-CNN
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1. Dataset Preparation all

maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets= 1
maxDets= 10
maxDets=100
maxDets=100
maxDets=100

maxDets=100

Average Precision
Average Precision
Average Precision
Average Precision
Average Precision
Average Precision

area=
area= all
area= all
area= small
area=medium
area= large
area= all
areas= all
area= all
area= small
area=medium
area= large

Input Source: Labelled JSON and image files.
Two Datasets:

Dataset 1: ["good”, "no_good"] (for binary classification)

Average Recall
Average Recall
Average Recall
Average Recall
Average Recall
Average Recall

Dataset 2: ["good”, "exc_solder”, "poor_solder”, "spike"]
Steps:

D Filter valid annotations based on class labels.

e e e e e e e e e e eeed

COPOOOO® OO

i) Split into 80% training and 20% validation.

i) Organize into /images/train, /images/val, /labels/train, /labels/val.

2. Dataset Registration with Detectron2

Parsed annotations using shapes from LabelMe JSON format.

Average
Average
Average
Average
Average
Average

Converted to Detectron2 format (polygon + bbox).

Registered with DatasetCatalog and MetadataCatalog.

3. Model Training & Evaluation

Model: Mask R-CNN (R-50 FPN) from Model Zoo.
Configuration:

BASE LR =0.00025, MAX_ITER =1500, BATCH_SIZE =2

Training: Performed using DefaultTrainer.

Average
Average
Average
Average
Average
Average

Evaluation: Used COCOEvaluator to compute mAP on validation set.

Precision
Precision
Precision
Precision
Precision
Precision
Recall
Recall
Recall
Recall
Recall
Recall

O 00000000

area= all
area= all
area= all
area= small
area=medium
area= large
area= all
area= all
area= all
area= small
area=medium

area= large

maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets= 1
EP O T
maxDets=100
maxDets=100
maxDets=100
maxDets=100

e e e e e b b e e e e ]




why our Model is better?

1) Higher Accuracy (mAP)

Our models consistently achieve higher mean Average Precision across all Detection (Bounding Box) AP
defect types, even without relying on complex segmentation-based Metric Custom Model
architectures like Mask R-CNN. This shows superior feature extraction and AP@0.5:0.95 69.34%

classification capability. AP@0.5 93.41%
g . 0

0
2) Faster Inference il UL

Unlike their setup, we explicitly optimize and measure inference time, Segmentation AP

making our models ideal for real-time edge deployment. Like in ResNet50 Metric Custom Model

model we have inference time of approx 0.6 ms.
AP@0.5:0.95 69.10%

3) Better Generalization AP@0.5 93.15%

Our models also achieve high per-class performance, addressing class AP@0.75 78.59%

imbalance and hard-to-detect defects more effectivelu.

MAP in Random Forest Classifier:- 69.25%
MAP in ResNet50+Random Forest Classifier:- 86.83%

SolDef_Al Paper
42.70%
96.90%

96.90%

SolDef_Al Paper
48.30%
56.90%

956.90%

Improvement
+26.64%
+36.51%

+22.00%

Improvement
+20.80%
+36.25%

+21.69%






