MLPR PROJECT END SEM PRESENTATION

PCB DEFECT

DETECTION USING ML

Prepared by group CTRL Z CREW (Group 13)

Members

Manish Bisht

Saksham Bali

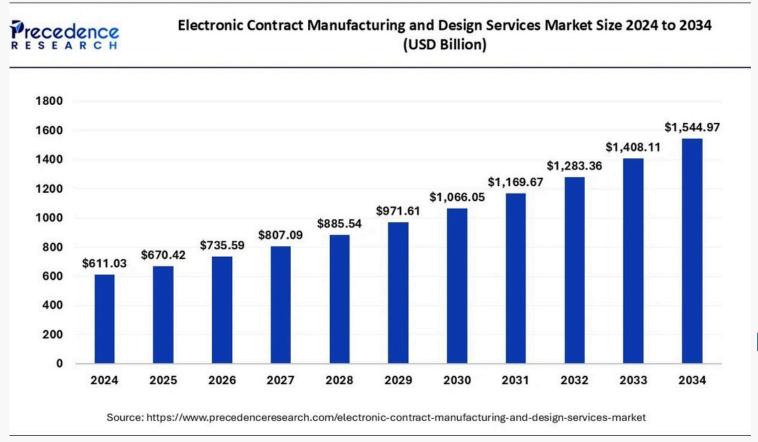
Sanskar Sengar

IMPORTANCE OF PCBs

With the increasing demand of PCB's due to the rise in demand for high performance computing components like GPUs, CPUs in AI and Software Industry, smartphones, computers, and gaming consoles in consumer industry and other industries like medical industry, Automotive industry, Aerospace and Defence Industry, etc., there is a proportional increase in the need to reduce the defects in PCB manufacturing and to detect any defects to prevent any accidents. Moreover, ensuring product quality mandates meticulous defect

inspection, a task exacerbated by the heightened precision of contemporary circuit boards, intensifying the challenge of defect detection. [1]

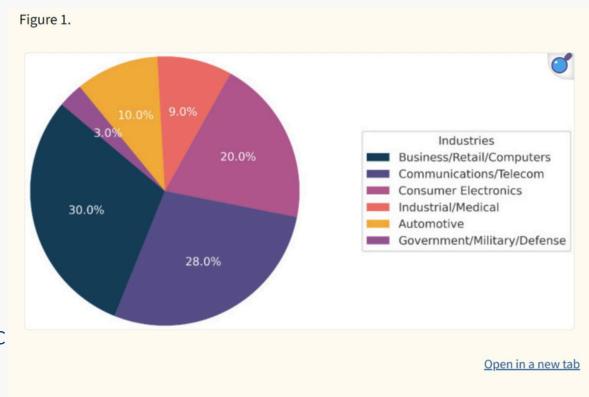
X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB Defect Detection," in IEEE Access, vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561.



The global electronic contract manufacturing and design services market size was accounted for USD 611.03 billion in 2024 and is expected to exceed around USD 1,544.97 billion by 2034, growing at a CAGR of 9.72% from 2025 to 2034.

[2] Precedence Research. Electronic contract manufacturing and design services market. https://www.precedenceresearch.com/electronic -contract-manufacturing-and-design-services-

market.



Proportions of PCB Applications in Various Fields.

DEFECTS IN PCBs

PCB can be categorized defects into two primary groups:

- 1) Functional defects that directly affect circuit operation and can cause complete failure.
- 2) Cosmetic defects that primarily impact appearance but may eventually lead to performance issues through abnormal heat dissipation or current distribution.

NEED TO DECREASE THESE DEFECTS

Decreasing these defects is crucial for reducing financial loss like if the defects are detected in bare PCBs (those without electronic components) or at the Solder Paste Inspection stage then reworking the PCB only costs one-tenth as compared to after the re-flow oven stage, reducing defects ensures better performance and longevity of end products and it is especially important that PCB has minimal to no defects in critical applications like automotive and medical devices, minimizing defects becomes crucial for safety and reliability.

ml (Manual Labour)

PROBLEM STATEMENT

PCB defects can compromise performance, increase costs, and reduce product reliability. Traditional inspections are labor-intensive and expensive, while deep learning solutions demand high computational resources. This project aims to develop a classical ML-based defect detection model using feature extraction and oversampling techniques to improve accuracy, scalability, and efficiency for manufacturers.

ML (Machine Learning Models)

Literature

Review

BarePCB state of art

Key Features of TDD-Net:

- Lightweight Architecture: Designed to be computationally efficient, making it suitable for real-time applications and deployment on devices with limited resources.
- High Accuracy: Achieves a mean Average Precision (mAP) of 98.90% on standard PCB defect datasets, outperforming several existing methods.

<u>Limitations:</u>

- 1.Simplified Assumptions: The model may rely on assumptions that oversimplify real-world complexities, such as static demand patterns or perfect market conditions.
- 2. Scalability Concerns: The approach might face challenges when scaling up to larger systems with numerous variables and constraints.
- 3.Integration with Real-Time Data: Limited consideration for real-time data integration, which is crucial for dynamic decision-making in electricity markets.
- 4. No time based criteria used for assessment

Citation:-

100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% missing hole mouse bite open circuit short mAP spur spurious copper Faster R-CNN[VGG-16] ■ Faster R-CNN[ResNet-101] FPN Faster R-CNN(fine tuned) TDD-Net(Ours)

Model	Backbone	Anchors	Feature	Head	mAP@0.5
Faster R-CNN [[8]]	VGG-16	2k	the last layer	2fc	58.57%
Faster R-CNN [[8]]	ResNet-101	2k	C5	2fc	94.27%
FPN [[14]]	ResNet-101	2k	{Pk}	2fc	92.23%
Faster R-CNN(fine-tui	ResNet-101	2k	C5	2fc	96.44%
TDD-Net(Ours)	ResNet-101	2k	{Pk}	2fc	98.90%

TDD-net: a tiny defect detection network for printed circuit boards Runwei Ding, Linhui Dai, Guangpeng Li, Hong Liu

https://doi.org/10.1049/trit.2019.0019

SoldefAI: State of Art

Model Used:-

- Mask R-CNN used by the authors for PCB defect segmentation.
- YOLO one-stage detector mentioned as a faster alternative
- SSD another one-stage detector cited for comparison

Gap Analysis:-

- No inference-time metrics (FPS/latency) are reported real-time speed is only discussed qualitatively (YOLO/SSD are noted to be faster).
- Moderate accuracy: the Mask R-CNN model achieves only ~62.1% mAP on the PCB defect task.

Insipiration Point:-

Their work effectively emphasizes the need for task-specific datasets, such as capturing PCB defects under varied angles and lighting. Their use of Mask R-CNN for segmentation, along with per-class mAP evaluation, offers a detailed performance breakdown — useful inspiration for robustness testing and structured defect analysis.

		Detection		
Metric	IoU	Area	maxDets	Value [%]
mAP	@IoU = 0.50:0.05:0.95	All	100	62.11
mAP	@IoU = 0.50	All	100	71.05
mAP	@IoU = 0.75	All	100	71.05
mAP	@IoU = 0.50:0.05:0.95	Small (area < 32 ²)	100	NaN
mAP	@IoU = 0.50:0.05:0.95	Medium $(32^2 < area < 96^2)$	100	NaN
mAP	@IoU = 0.50:0.05:0.95	Large (area > 96 ²)	100	62.113
		Segmentation		
mAP	@loU = 0.50:0.05:0.95	All	100	68.57
mAP	@IoU = 0.50	All	100	71.05
mAP	@IoU = 0.75	All	100	71.05
mAP	@IoU = 0.50:0.05:0.95	Small (area < 32 ²)	100	NaN
mAP	@loU = 0.50:0.05:0.95	Medium $(32^2 < area < 96^2)$	100	NaN
mAP	@IoU = 0.50:0.05:0.95	Large (area > 96 ²)	100	68.57

Citation:-

Fontana, G., Calabrese, M., Agnusdei, L., Papadia, G., & Del Prete, A. (2024). SolDef_Al: An Open Source PCB Dataset for Mask R-CNN Defect Detection in Soldering Processes of Electronic Components. Journal of Manufacturing and Materials Processing, 8(3), 117. https://doi.org/10.3390/jmmp8030117

Evaluation Criteria

- <u>Mean Average Precision (mAP):</u> The mean of APs over all classes telling on average, denoting the mean value resulting from the integration of accuracy rates across distinct thresholds, spanning a recall range from 0 to 1.
- **FPS** serves as a metric for assessing inference speed, representing the quantity of images that can be processed per second on specific hardware. FPS holds significance as a key metric for gauging model performance and its applicability in real-time scenarios.
- The <u>F1 score</u> provides a balanced mean between precision and recall, effectively harmonizing the model's accuracy and recall
- <u>Precision</u> refers to the ratio of correctly predicted positive samples to the total predicted positive samples by the model

$$F_1 = rac{2TP}{2TP + FP + FN}$$

$$Precision = rac{TP}{TP + FP}$$

Citation: X. Chen, Y. Wu, X. He and W. Ming, "A Comprehensive Review of Deep Learning-Based PCB Defect Detection," in IEEE Access, vol. 11, pp. 139017-139038, 2023, doi: 10.1109/ACCESS.2023.3339561.

GAPS IN CURRENT METHODOLOGIES

Manual Labour

To date about 45%

 industries detect the
 defects using
 traditional manual
 inspection methods
 which are highly
 labour-intensive, time-consuming, and prone
 to human error due to
 lower operating costs.

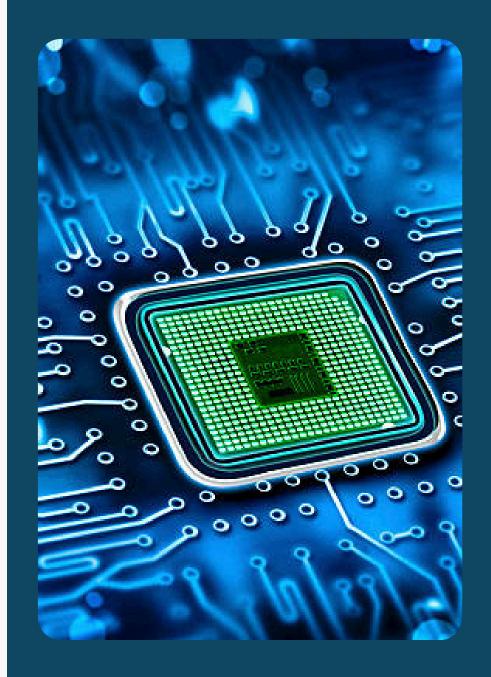
Existing models in industry

• Technologies like Solder Paste Inspection (SPI) and Automated Optical Inspection (AOI), still face challenges in achieving high accuracy, scalability, and adaptability across diverse PCB designs, as a result industries still need to use manual labor to verify these. But are still used due to time efficieny. However, since AOI is limited to surface-visible defects it becomes hard to catch hidden or functional faults, for which methods like X-ray imaging inspect internal solder joints and multilayer boards to reveal voids or misaligned connections and thermal imaging for detecting thermal anomalies (like in short circuit) were introduced in the industry. But each had its own gaps. The X-ray imaging is not efficient in detecting fine cracks or open solder joints and the problem with thermal imaging is that its resolution is relatively low, making it poorly suited to very small defects. Although all of these methods provided better inspection quality, most of them are limited by financial and time constraints. But the AOI can detect almost any type of defects in a faster and completely indestructible approach

1) Fonseca, L.A.L.O., Iano, Y., Oliveira, G.G.d. et al. Automatic printed circuit board inspection: a comprehensible survey. Discov Artif Intell 4, 10 (2024). https://doi.org/10.1007/s44163-023-00081-5

Challenges in Current Methodologies

- 1) Data Imbalance: Minor defects occupy a small area on PCBs, leading to an imbalance between defective and non-defective samples during training leading to poor model performance for rare defect categories.
- 2) Feature Loss in Deep Networks: While deep learning models excel at feature extraction, the sometimes lose critical information about small defects due to down-sampling layers.
- 3) Computational Efficiency: Many state-of-the-art models like YOLOv3 or Faster R-CNN achieve high accuracy but are computationally expensive.
- 4) Not Scalable Across Different Designs: PCB as a technology are continuously evolving and the models start failing as soon as there is a change in its design and hence models need to retrained on new data frequently requiring the need of models that can be retrained efficiently at a scalable level without losing accuracy
- 5) Current models do not factor in time and most of them use no criteria relating to time in their models.



Data Set Study

Dataset consists images in .JPG format along with JSON file containing their data in it.

1. Bare PCB Inspection

- There are around 8534 training images of these.
- For bare PCBs (before soldering), the following defects are examined:
- Missing Hole A required hole is not drilled or plated.
- Mouse Bite Small notches or irregularities along the PCB edges.
- Open Circuit A break in the circuit traces, causing connectivity failure.
- Short Circuit Unintended connections between traces leading to malfunctions.
- Spur Unwanted protrusions in the copper traces.
- Spurious Copper Unintended copper residue, which can cause electrical issues.

2. Solder Paste PCB Inspection

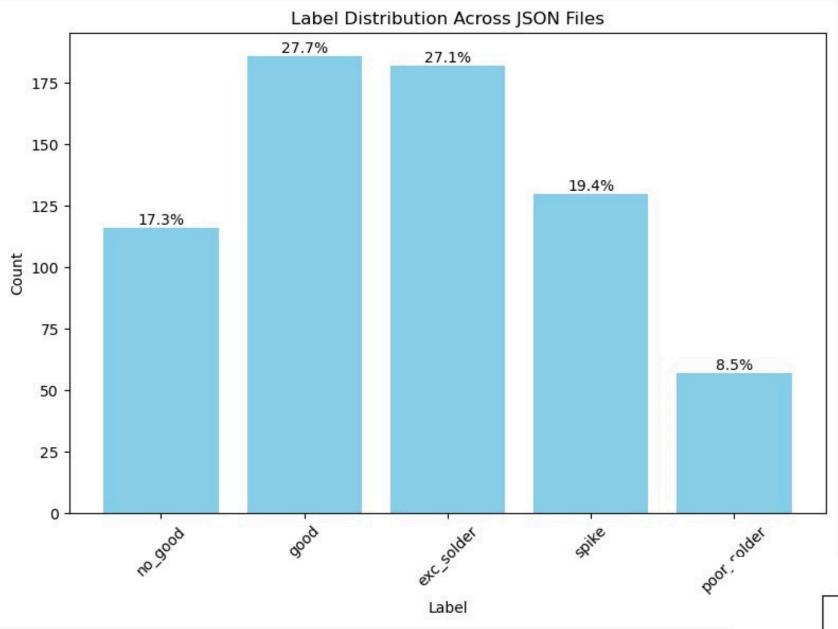
- This datset has around 2000 images in it.

 During the inspection of solder paste application on PCBs, the following categories are identified:
- Good Category Proper solder paste application ensuring reliable connections.
- Excessive Solder Too much solder, which can lead to bridging or weak joints.
- Not Good General classification for defects in solder application.
- Poor Solder Insufficient or uneven solder, leading to weak connections.
- Spike Sharp solder formations that can cause short circuits.

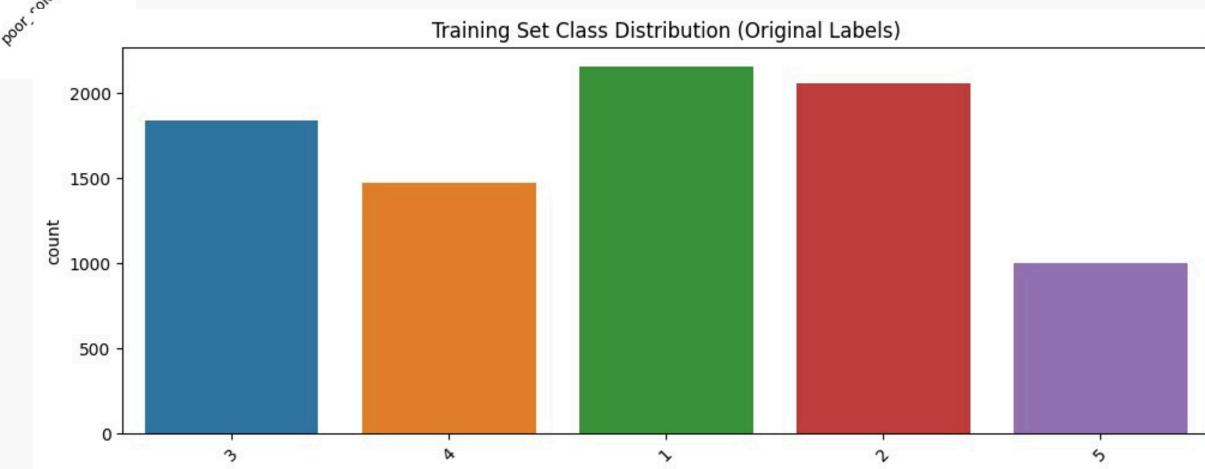
https://www.kaggle.com/datasets/mauriziocalabrese/soldef

-ai-pcb-dataset-for-defect-detection/data -

https://www.kaggle.com/datasets/akhatova/pcb-defects



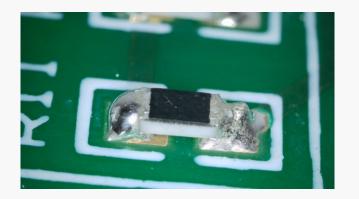
Data Set Study



Dataset

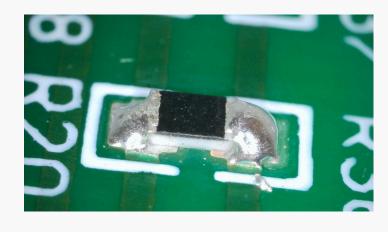
Solder Paste Dataset

Good

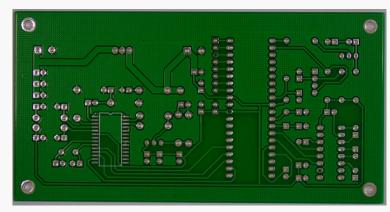


Spike

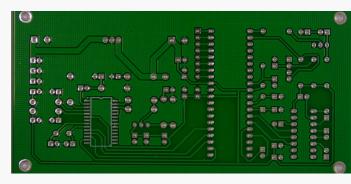
Not Good



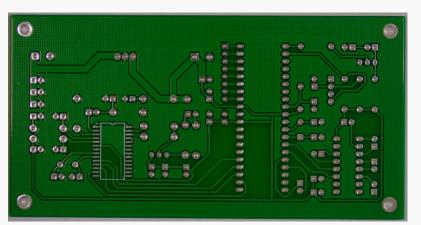
Bare PCB



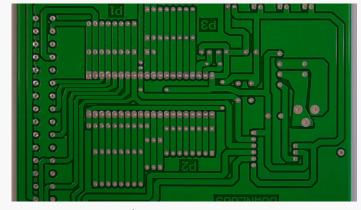
Missing Hole



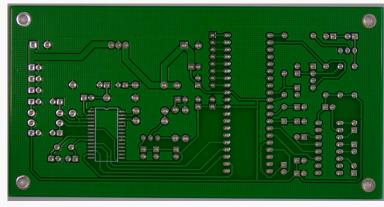
spur



open_circuit

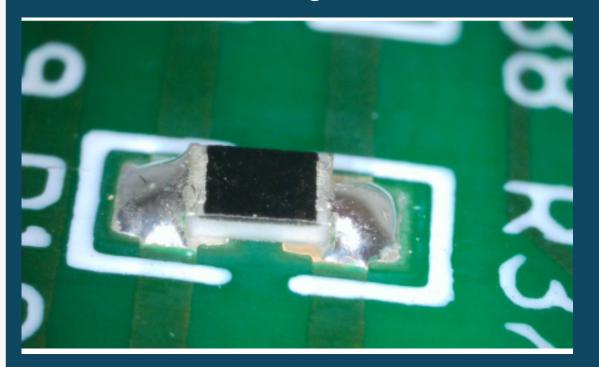


spurious_copper

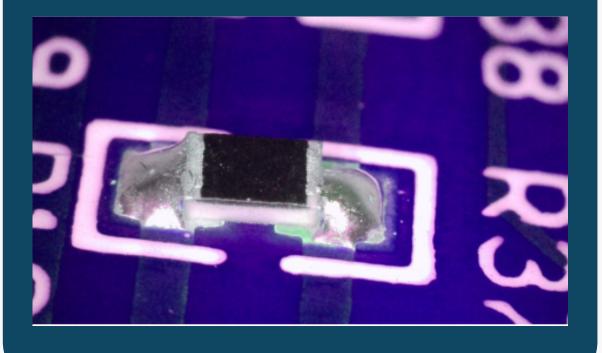


short

Original



Hue



Pre-processing

Since our dataset consists of images, we do not need to preprocess the data. 2)
 We are expanding our dataset by applying modifications such as rotating the images at different angles, adjusting the hue, and increasing saturation.
 In future we may segment a single image into multiple images for better accuracy on minor defects.

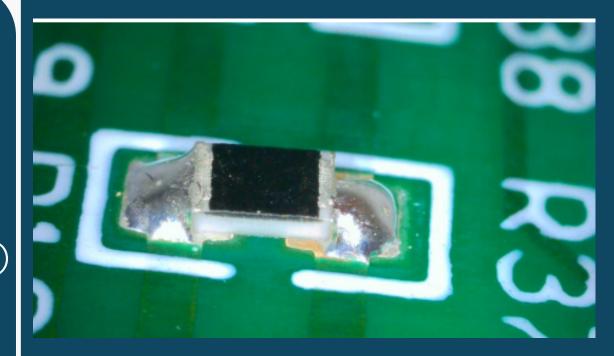
Fonseca, L.A.L.O., Iano, Y., Oliveira, G.G.d. et al.

Automatic printed circuit board inspection: a

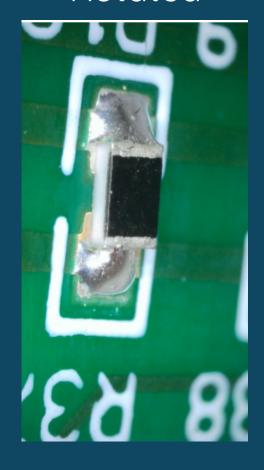
comprehensible survey. Discov Artif Intell 4, 10

(2024). Your paragraph text

Saturated



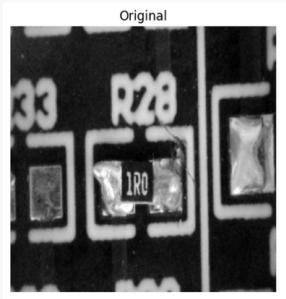
Rotated



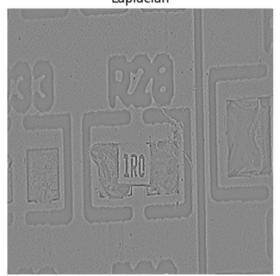
Dataset Preprocessing

We have used several methods to extract features which include:

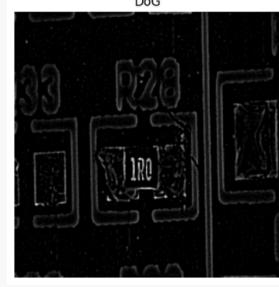
- Histogram of Oriented
 Gradients
- Local Binary Pattern (LBP)
- GLCM (Gray Level Cooccurrence Matrix)
- Hu Moments
- Sobel Gradient Features
- Color Histogram
- Contour-Based Shape
 Features

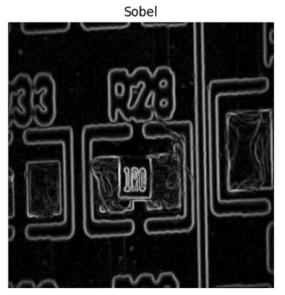


Laplacian

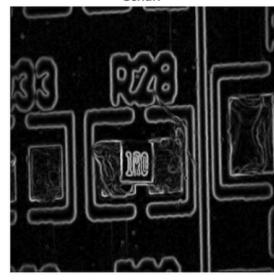


DoG

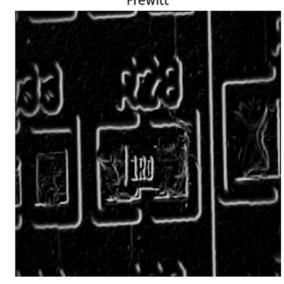


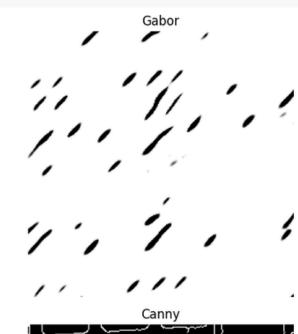


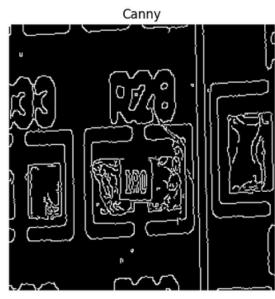
Scharr



Drowit







Model Pipeline Type of PCB stage using CNN as a binary classifier Solder Paste BarePCB Stage PCB **Data Loading and Data Loading and** preprocessing: preprocessing: 1. Load the images 1. Load the images 2. Perform label encoding 2. Perform label encoding 3. Perform augmentation on 3. Perform augmentation on minority classes minority classes ResNet50 + Random Resnet + RF CNN model Mask R-CNN Random Random Forest Forest Forest . Extract Handcrafted 1. Build custom CNN: I. Extract Handcrafted Feautres using pre-trained 1. Used Framework: - Detectron 2 2D convolutional layers, 1. Preprocess input for ResNet50 I. Extract Handcrafted Feautres using HOG model ResNet50 2.Backbone: - ResNet 50-FPN maxpooling, batch 2. Extracting features using Feautres: 2. Label Encoding 2. Standardize the features 3.Input Format:- COCO like style normalization, droupout HOG, LBP, GLCM, etc. ResNet50 3. Standardize the features 3. Dimensionality Reduction 4. Detection and Segmentation 2. Train CNN: 2. Standardize the features 4. Hyperparameter 3. Training random forest using PCA are performed adam optimizer and 3. Train random forest classifier Optimization 4. Smote Oversampling 5. Evaluation metric: - COCO AP categorical crossentropy 5. Train random forest 5. Train random forest Classification Classification mouse missing spurious Poor Excess open spur short Spike Good Solder hole Good Solder copper circuit

CNN as a binary classifier

Data Loading

- Recursive scan of two folders (bare_pcb_folder, solder_pcb_folder)
- Images resized to 224×224 px, normalized to [0,1]
- Labels: 0 = bare PCB, 1 = solder PCB

Dataset Preparation

- Combined into X (images) and y (labels) arrays
- Stratified train/test split (80 % train, 20 % test, random_state=42)

Model Architecture

- Conv Block 1: Conv2D (32 filters, 3×3) \rightarrow ReLU \rightarrow MaxPool (2×2)
- Conv Block 2: Conv2D (64 filters, 3×3) \rightarrow ReLU \rightarrow MaxPool (2×2)
- Classifier: Flatten → Dense (64, ReLU) → Dense (1, Sigmoid)

Training & Evaluation

- Compiled with Adam optimizer, binary cross-entropy loss, accuracy metric
- Trained for 1 epoch (batch size 32) with validation on test set

BarePCB Models

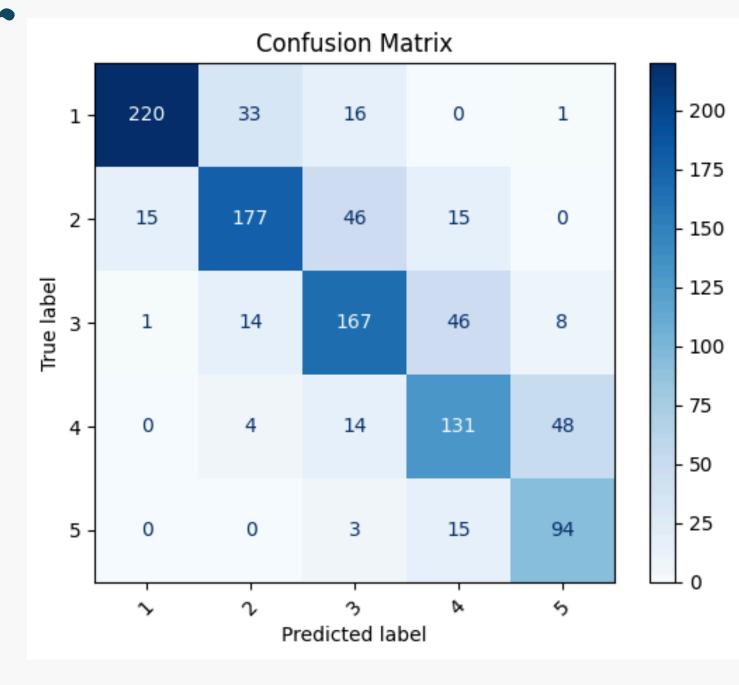
1) Random Forest Classifier

Architecture:

- Feature Extraction:
 - Each image (128×128) is transformed into a fixed-length numeric feature vector using a combination of kernels like HOG features, sobel, Hu moments, etc.
- Data Augmentation & Balancing:
 - Applied albumentations transforms to balance underrepresented classes.
 - All 5 defect classes have 2159 samples each.
- Random Forest Classifier
 - o n_estimators: 300
 - o max_depth: 30
 - Class weighting: Balanced
 - StandardScaler() for input normalization

Evaluation:

- Test Accuracy: 73.88%
- mAP: 0.8035
- AUC (OvR): 0.9491
- Inference Time: 2.79 s
- FPS: 3828



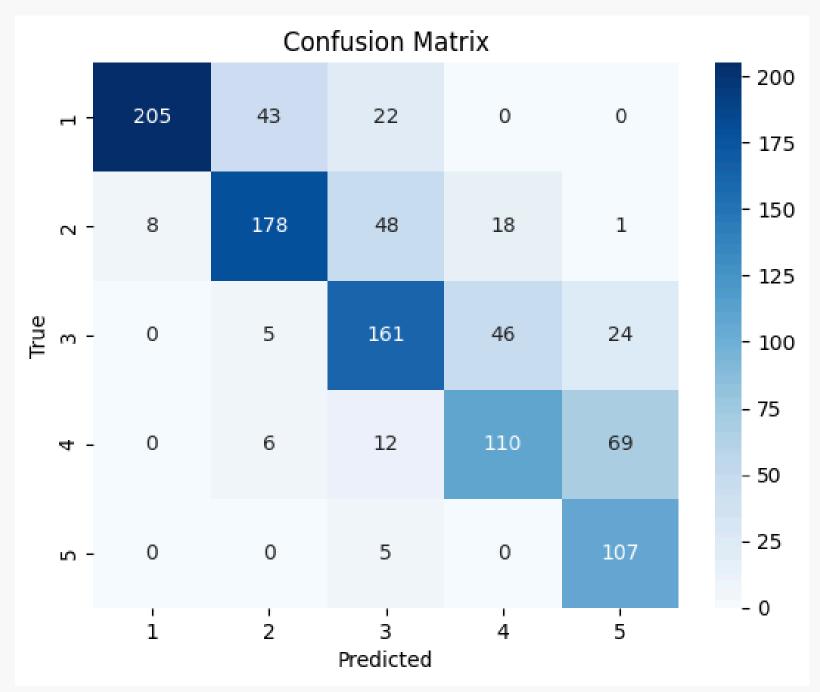
Class	Precision	Recall	F1-score
1	0.93	0.81	0.87
2	0.78	0.7	0.74
3	0.68	0.71	0.69
4	0.63	0.66	0.65
5	0.62	0.84	0.71

Architecture:

- CNN layers:
 - 3 Conv2D layers with ReLU + BatchNorm + MaxPool
 - \circ Dense(256) → Dropout(0.4) → Output (softmax)
- Loss Function: Custom Focal Loss
- Minority class augmentation
- Optimizer: Adam (lr=1e-5)
- Early Stopping: Patience=5

Evaluation:

- Test Accuracy: 71%
- Macro F1-Score: 0.70
- mAP: 0.7592
- AUC (OvR): 0.935
- Inference Time: 5.66s (FPS: 188.85)



Per-class F1-score:
1: 0.8489
2: 0.7340
3: 0.6653
4: 0.5930
5: 0.6837

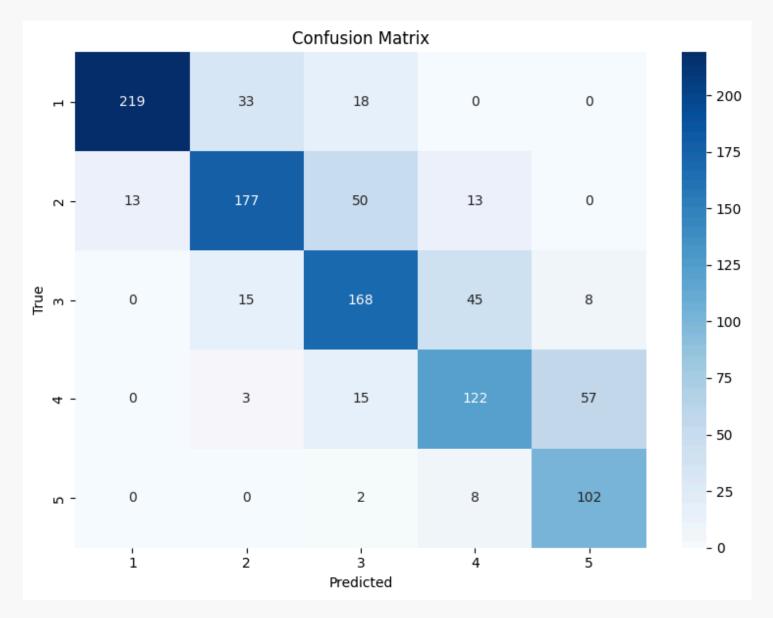
3) Resnet + Random Forest Classifier

Architecture:

- Feature Extraction using ResNet50
 - All images are resized to 224×224×3 to match ResNet50's input.
 - The last convolutional output is passed through GlobalAveragePooling2D() resulting in a 2048dimensional vector for each image.
- Random Forest classifier for classification
 - n_estimators = 100 trees
 - random_state = 42 for reproducibility

Evaluation:

- Accuracy: 74%
- Mean Average Precision (mAP): 0.7748
- Overall AUC Score: 0.9423
- Inference Speed:
 - o Total Time: 0.06s
 - o FPS: ~18,134



Per-class Precision:	Per-class F1-score:
1: 0.944	1: 0.873
2: 0.776	2: 0.736
3: 0.664	3: 0.687
4: 0.649	4: 0.634
5: 0.611	5: 0.731

Solder Paste Models

Random Forest Classifier

Pipeline:-

1) Data pre-processing and Augmentation:

Each image is loaded using OpenCV and resized to a fixed size.

Albumentations library is used to perform:

- i) Horizontal Flip (p=0.5)
- ii) Random Brightness/Contrast (p=0.2)
- iii) Rotation (±15 degrees, p=0.3)

2) Feature Extraction (HOG)

Grayscale conversion of the image as HOG does not require colour Extracted Using:

- i) 9 orientations
- ii) 8*8 Pixels
- iii) 2*2 block normalization

3) Label Encoding:

Labels extracted from JSON files are encoded into integers using LabelEncoder, suitable for scikit-learn classifiers

4) Hyperparameter Optimization:

Performed using GridSearchCV with 3-fold cross-validation on:

n_estimators: [100, 200]; max_depth: [10, 20, None]

min_samples_split: [2, 5]; min_samples_leaf: [1, 2]

max_features: ['sqrt', 'log2']

Mean Average Precision (mAP): 0.6925

Classificatio	n Report (Rar	ndom Fores	st + HOG +	Augmentation)
	precision	recall	f1-score	support
exc_solder	0.71	0.52	0.60	33
good	0.52	0.76	0.62	66
no_good	0.58	0.55	0.57	47
poor_solder	1.00	0.15	0.27	13
spike	1.00	0.47	0.64	15
accuracy			0.59	174
macro avg	0.76	0.49	0.54	174
weighted avg	0.65	0.59	0.57	174
Average Preci	Average Precision (per class):			
exc_solder: 0.7974				
good: 0.7992				
no_good: 0.7463				
poor_solder: 0.3169				
spike: 0.8026				

ResNet50 + Random Forest

Pipeline Description:-

- **Feature Extraction:** Each image was resized to 224x224 and passed through a pre-trained ResNet50 (without the top layer) to extract global average pooled features.
- Standardization: Features were scaled using StandardScaler.
- Dimensionality Reduction: PCA with 200 components was applied to reduce overfitting and computation.
- SMOTE Oversampling: The training set was augmented with synthetic samples to balance the class distribution.
- Classifier: A Random Forest with 300 trees and balanced_subsample class weighting was used.

Mean Average Precision

mAP (macro-averaged): 0.8683

Inference Performance

- Total Inference Time: 0.0959 seconds for 162 images
- Average Inference Time per Image: 0.000592 seconds (~0.6 ms)

The pipeline is extremely fast, offering near real-time classification performance.

```
Classification Report:
                            recall f1-score
               precision
                                             support
  exc solder
                   0.74
                             0.97
                                        0.84
                                                    33
                   0.62
                                        0.49
                                                    32
        good
                             0.41
                   0.68
                                        0.70
                                                    32
     no good
                             0.72
 poor solder
                                                   33
                                        0.97
                   0.97
                             0.97
                                        0.95
                                                    32
                   0.97
                             0.94
       spike
                                       0.80
                                                  162
    accuracy
                                        0.79
                                                  162
   macro avg
                   0.80
                             0.80
weighted avg
                   0.80
                                       0.79
                             0.80
                                                  162
Confusion Matrix:
 [[32 0 0 0 1]
Mean Average Precision (mAP): 0.8683
Total Inference Time: 0.0959 seconds
Average Inference Time per Image: 0.000592 seconds
```

MASK R-CNN

1. Dataset Preparation

Input Source: Labelled JSON and image files.

Two Datasets:

Dataset 1: ["good", "no_good"] (for binary classification)

Dataset 2: ["good", "exc_solder", "poor_solder", "spike"]

Steps:

- i) Filter valid annotations based on class labels.
- ii) Split into 80% training and 20% validation.
- iii) Organize into /images/train, /images/val, /labels/train, /labels/val.

2. Dataset Registration with Detectron2

Parsed annotations using shapes from LabelMe JSON format.

Converted to Detectron2 format (polygon + bbox).

Registered with DatasetCatalog and MetadataCatalog.

3. Model Training & Evaluation

Model: Mask R-CNN (R-50 FPN) from Model Zoo.

Configuration:

BASE LR = 0.00025, MAX ITER = 1500, BATCH SIZE = 2

Training: Performed using DefaultTrainer.

```
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                                         maxDets=100 ] = 0.893
                                           area=
                                                   all
                   (AP) @[ IoU=0.50
                                                         maxDets=100 ] = 0.945
Average Precision
                                                   all
                                           area=
Average Precision
                   (AP) @[ IoU=0.75
                                                         maxDets=100 \ ] = 0.945
                                           area=
                                                   all
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                           area= small
                                                         maxDets=100 = -1.000
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                           area=medium
                                                         maxDets=100 = -1.000
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                                         maxDets=100 ] = 0.893
                                          area= large
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                           area=
                                                  all
                                                         maxDets= 1 = 0.946
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                           area=
                                                         maxDets= 10 ] = 0.967
                                                   all
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area=
                                                  all
                                                         maxDets=100 ] = 0.967
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area= small
                                                         maxDets=100 ] = -1.000
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                           area=medium
                                                         maxDets=100 ] = -1.000
                   (AR) @[ IoU=0.50:0.95
                                                         maxDets=100 ] = 0.967
Average Recall
                                           area= large
```

```
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                                   all
                                                         maxDets=100 ] = 0.691
                                           area=
                                                   all
Average Precision
                   (AP) @[ IoU=0.50
                                                         maxDets=100 ] = 0.932
                                           area=
Average Precision
                   (AP) @[ IoU=0.75
                                                   all
                                                         maxDets=100 ] = 0.786
                                           area=
                   (AP) @[ IoU=0.50:0.95
                                           area= small
Average Precision
                                                         maxDets=100 ] = -1.000
                   (AP) @[ IoU=0.50:0.95
Average Precision
                                                         maxDets=100 ] = 0.500
                                           area=medium
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                           area= large
                                                         maxDets=100 ] = 0.692
                                                         maxDets= 1 ] = 0.666
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area=
                                                   all
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                                         maxDets= 10 ] = 0.780
                                                   all
                                           area=
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                                   all
                                                         maxDets=100 ] = 0.782
                                           area=
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                                         maxDets=100 ] = -1.000
                                           area= small
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area=medium
                                                         maxDets=100 ] = 0.500
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area= large
                                                         maxDets=100 ] = 0.783
```

Evaluation: Used COCOEvaluator to compute mAP on validation set.

Why our Model is better?

1) Higher Accuracy (mAP)

Our models consistently achieve higher mean Average Precision across all defect types, even without relying on complex segmentation-based architectures like Mask R-CNN. This shows superior feature extraction and classification capability.

2) Faster Inference

Unlike their setup, we explicitly optimize and measure inference time, making our models ideal for real-time edge deployment. Like in ResNet50 model we have inference time of approx 0.6 ms.

3) Better Generalization

Our models also achieve high per-class performance, addressing class imbalance and hard-to-detect defects more effectively.

Metric	Custom Model	SolDef_Al Paper	Improvement		
AP@0.5:0.95	69.34%	42.70%	+26.64%		
AP@0.5	93.41%	56.90%	+36.51%		
AP@0.75	78.90%	56.90%	+22.00%		
Segmentation AP					
Metric	Custom Model	SolDef_Al Paper	Improvement		
AP@0.5:0.95	69.10%	48.30%	+20.80%		

56.90%

+21.69%

Detection (Bounding Box) AP

78.59%

AP@0.75

mAP in Random Forest Classifier:- 69.25%
mAP in ResNet50+Random Forest Classifier:- 86.83%

Thank you